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Abstract
Since different sensor signals are commonly het-1

erogeneous, how to achieve feature-level fusion be-2

tween different modalities in a most robust way re-3

mains a challenge in the field of robotics. In this4

paper, we propose a new fusion strategy, an adap-5

tive bi-modality feature fusion module that com-6

bines both “soft fusion” and “hard fusion”. This is7

a solution to the problem of non-robust fusion due8

to the poor data generated by one of the two sensor9

signals. Specifically, when a selected LiDAR point10

can be associated with a pixel of an image based11

on the sensor parameters, we use the multi-head12

attention mechanism to query the features in the13

LiDAR features and in the image features, respec-14

tively. We further design a point-wise “hard” asso-15

ciation module to calculate the confidence scores of16

the two types of features and thus adaptively aggre-17

gate the associated features to this center point. Ex-18

periments on large-scale real-world dataset demon-19

strate that the proposed method outperforms the20

existing state-of-the-art methods. Compared to21

the baseline, hard fusion method and soft fusion22

method, our method improves by 51%, 30% and23

4%, respectively.24

1 Introduction25

3D object detection task is receiving considerable attention26

in the field of intelligent robotics [Wang and Jia, 2019] and27

autonomous driving [Sagar, 2022], its main purpose is to es-28

timate the localization, shape and specific semantics of an ob-29

ject from a given sensor signal. LiDAR and color cameras are30

commonly used sensors for 3D object detection tasks. Pop-31

ular real-world datasets such as Waymo [Sun et al., 2020],32

KITTI [Geiger et al., 2013], nuScenes [Caesar et al., 2020],33

etc. contain both sensors. However, both LiDAR signals and34

color images have inherent disadvantages. As shown in the35

upper left corner of Figure 1, the LiDAR signal can pro-36

vide 3D geometric information of an object, but its sparse-37

ness leads to the loss of most information of small and distant38

objects. Color images contain dense pixels and provide rich39

texture information. But it is difficult to obtain the depth in-40

formation of each pixel from a single image, which limits our41
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Figure 1: Comparison of different multi-modality fusion solu-
tions. 3D sparse point cloud and 2D image fusion methods are clas-
sified into four categories: result-level, proposal-level, point-level,
and Transformers-based fusion. We call the schemes that decorate
LiDAR point clouds using image texture information in a point-by-
point method as “Hard-association” at the point level. The schemes
for LiDAR points to query and fuse global image features based on
Transformers structure are called “Soft-association”.

ability to perceive the 3D distance information of an object. 42

Therefore, bridging the disadvantage of a single sensor by 43

fusing two sensors [Roy et al., 2022] is a promising direc- 44

tion. 45

Many works have given different schemes on how to 46

fuse LiDAR signals and images for improving autonomous 47

driving perception performance more reasonably and effi- 48

ciently. As shown in Figure 1, we classify deep learning- 49

based 3D object detection methods into four categories: 50

Result-level, Proposal-level, Point-level (hard-association) 51

and Transformer-based Fusion (soft-association). The result- 52

level fusion scheme, exemplified by Frustum-PointNets [Qi 53

et al., 2018], relies heavily on 2D detection of the image. 54

Frustum-PointNets maps 2D image detection results into a 55

3D Frustum of view and instantiates the segmentation of 3D 56

objects. This method [Qi et al., 2018] has difficulty in esti- 57

mating the 3D positions of small objects and heavily occluded 58

objects because the final results are derived from the 2D de- 59

tection results. In addition, MV3D [Chen et al., 2017] and 60



AVOD [Ku et al., 2018] directly fuse the two modality fea-61

tures in the region where the initial predicted proposal boxes62

are located. This proposal-level fusion solution inevitably in-63

volves the addition of background noise features to the fusion,64

which can cause incorrect feature representation in complex65

scenes. Next, there are also some works [Huang et al., 2020;66

Jiang et al., 2022] that perform a point-by-point correspon-67

dence between LiDAR points and pixels through the cam-68

era intrinsic and extrinsic. The point cloud features are aug-69

mented or decorated by the correspondence between LiDAR70

points and image pixels. The point-level feature fusion solu-71

tions represented by EPNet [Huang et al., 2020] improves the72

performance of fusion-based 3D object detection networks73

up to one level. Further, the cross-modality data enhance-74

ment algorithm proposed by PointAugmenting [Wang et al.,75

2021] further enhances the performance of point-level fusion76

methods. However, this point-level scheme is essentially a77

direct concatenation of features, which relies heavily on the78

calibration results between sensors. Recently, Transformer-79

based methods for solving soft correspondences of the multi-80

modality features have achieved in the best detection perfor-81

mance. Using the Transformer-based architecture, DeepFu-82

sion [Li et al., 2022] fully considers feature alignment dur-83

ing fusion and physical alignment after data augmentation.84

TransFusion [Bai et al., 2022] introduces simple and effec-85

tive module for image-guided class-specific heatmap genera-86

tion. These methods establish high-quality soft correlations87

between heterogeneous features, which effectively alleviate88

the loss of dense image features.89

However, LiDAR and the camera do not always have high90

quality signal data at the same time [Bai et al., 2022]. When91

some pixels are poorly textured representations affected by92

lighting, we should select better quality geometric features.93

When falling on the surface of certain objects with very94

sparse LiDAR points, we should select richer texture features.95

For more extreme cases, although the previous approach96

establishes a soft correspondence between high-quality bi-97

modality, this scheme still leads to a significant degradation98

of the network performance when the image data suffers from99

heavy contamination. Therefore, we consider that a more rea-100

sonable solution should consist of three elements: 1) First,101

each LiDAR point must have robust global geometric fea-102

tures. LiDAR features are the key to learn 3D object infor-103

mation.; 2) A LiDAR point features secondly be softly as-104

sociated to rich image features; 3) A LiDAR point features105

should estimate confidence scores for its associated geomet-106

ric and texture features, which makes the network aware that107

the current point is more supposed to focus on which high-108

quality features. Based on this inspiration, a bi-modality fea-109

ture fusion module with both soft and hard components is110

designed in this paper. As shown in Figure 3, we propose111

a two-stage feature update method. The valid points in the112

initial prediction boxes of the first stage are used as queries.113

These queries focus on robust geometric and texture features114

from two modal features with Transformer-based soft fea-115

ture association modules, respectively. Unlike previous meth-116

ods that depend on soft fusion only or hard fusion only, our117

method aggregates the associated features into valid points118

in the prediction frame based on the computed feature con-119

fidence scores. Such soft and hard feature fusion methods 120

effectively update the feature representation to improve the 121

detection performance of the network. We demonstrate the 122

effectiveness of the proposed method on a large-scale au- 123

tonomous driving dataset, nuScenes [Caesar et al., 2020]. 124

The 32-beam LiDAR in the nuScenes dataset scans relatively 125

sparse LiDAR points for small objects. Our fusion solution is 126

further improving the performance of the network for small 127

object detection. The main contributions of this work can be 128

summarized in three main points: 129

• Harsh scenes and small objects with few signals cause 130

no significant improvement in the accuracy of current 131

3D object detection networks. In this paper, a LiDAR- 132

Camera fusion 3D detection framework is proposed and 133

designed. The full potential of point cloud feature 134

and image feature fusion is exploited, and a robust bi- 135

modality fusion strategy is given especially for the poor 136

signal on one side. 137

• A bi-modality feature fusion module with both hard and 138

soft components is proposed, which guides the network 139

to refine more accurate 3D positions and orientations of 140

objects in the second stage. The rationality and effec- 141

tiveness of this feature fusion scheme is demonstrated in 142

this paper. 143

• The proposed method achieves state-of-the-art 3D de- 144

tection performance on the nuScenes dataset, especially 145

demonstrating powerful performance for small object 146

detection with degraded image quality and objects with 147

few LiDAR signals. 148

2 Related Works 149

2.1 Single-modality 3D Object Detection 150

The feature representation of the input signal is crucial for 151

the 3D detection head to learn 3D object bounding box in- 152

formation. LiDAR point clouds are commonly used as input 153

data for 3D object detection tasks. Many works use different 154

forms of data to improve feature representation. PointNet [Qi 155

et al., 2017] learns the global spatial features of each point 156

directly from the raw point cloud data. PointNet is the pio- 157

neer of deep learning of point clouds. F-PointNet [Qi et al., 158

2018] performs 3D instance segmentation from the frustum 159

of view to estimate the position of 3D objects based on Point- 160

Net. PointPillars [Lang et al., 2019] extends point clouds 161

from four-dimensional to nine-dimensional Pillars and ex- 162

tracts features from Pillars using PointNet. VoxelNet [Zhou 163

and Tuzel, 2018] converts point cloud to voxels and proposes 164

a Voxel Feature Encoding (VFE) module to learn point cloud 165

features. CenterPoint [Yin et al., 2021a] is based on VoxelNet 166

using center points to represent objects, which simplifies the 167

3D object detection task. SECOND [Yan et al., 2018] uses 168

sparse convolution to effectively improve the disadvantage of 169

more time-consuming 3D convolution. 170

2.2 Bi-modality 3D Object Detection 171

In recent years, there are many works focusing on point cloud 172

and image fusion for 3D object detection. We roughly clas- 173

sify the different fusion solutions into four categories in Fig- 174

ure 1, where the first two categories of detection boxes [Qi 175
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et al., 2018; Shin et al., 2019] and proposal boxes [Chen et176

al., 2017; Ku et al., 2018] based solutions are more shallow177

feature fusion, and these methods suffer from severe perfor-178

mance degradation in more complex environments. Later,179

some methods [Huang et al., 2020; Vora et al., 2020] obtain180

a one-to-one correspondence between LiDAR points and im-181

age pixels based on the sensor calibration. These methods182

concatenate the features of both modalities in a deeper fea-183

ture extraction stage. This point-level fusion scheme further184

exploits the high-dimensional feature complementarity of bi-185

modality features. The point-level feature fusion schemes186

proposed by EPNet [Huang et al., 2020], PointAugmenting187

[Wang et al., 2021], and PointPainting [Vora et al., 2020]188

show excellent 3D object detection performance on multiple189

datasets, respectively. Recently, Transformer-based soft fea-190

ture association methods [Li et al., 2022; Bai et al., 2022]191

show state-of-the-art 3D object detection results. The perfor-192

mance of these methods has a higher ceiling. DeepFusion193

[Li et al., 2022] uses LiDAR data as queries for alignment194

of bi-modality features at the mid-level, which greatly re-195

duces the interference of noisy features. In this paper, we196

aim to fully release the potential of Transformer-based archi-197

tectures in multi-modality feature fusion. Instead of trusting198

the Transformer consistently, a confidence score is learned199

for each point concerning the different modality features it200

is associated to. The proposed method can effectively cope201

with the case of sparse geometric information or image tex-202

ture degradation.203

3 Bi-modality Feature Fusion Network with 204

Both Soft and Hard Associations 205

In this part, we will present the proposed 3D object detection 206

network architecture, in which the designed bi-modality fea- 207

ture fusion module will be described in detail. The whole net- 208

work structure is divided into three parts to be described sep- 209

arately: 1) Initial feature extraction network for point clouds 210

and images; 2) Object query initialization and initial object 211

bounding boxes generation; 3) LiDAR-Camera features fu- 212

sion module with both soft and hard components. 213

3.1 Image and LiDAR Feature Extraction 214

Network 215

Like the previous works [Yoo et al., 2020; Yin et al., 2021a], 216

the input data for the model comes from six cameras and a 217

rotating mechanical LiDAR. The 2D backbone for extracting 218

image features in our model uses ResNet50 [He et al., 2016]. 219

3D backbone uses PointPillars [Lang et al., 2019] or Voxel- 220

net [Zhou and Tuzel, 2018]. The generated 3D voxel space 221

features are compressed into BEV space as shown in Figure 222

2. 223

3.2 Object Querie Generation and Transformer 224

Decoder 225

Given six image features {Iif |If ∈ RH×W×C}, i = 1...6} 226

and one LiDAR BEV feature Lf ∈ RX×Y×C , our primary 227

goal is to estimate a heat map that characterizes the 3D loca- 228

tion of objects in space. H×W and X×Y represent the size 229

of image features and BEV feature map, respectively, and C 230

is the number of channels of the features. From the exper- 231

imental experience of previous method [Zhou et al., 2022; 232

Yin et al., 2021a], high recall of object position detection 233
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is already achievable with only LiDAR features. To further234

improve the recall of small object detection, we choose to235

use image feature-guided object heat map estimation, which236

is the soft attention feature association performed by camera237

features and LiDAR BEV features based on Transformer de-238

coder [Bai et al., 2022]. The design of Transformer decoder239

follows DETR [Carion et al., 2020] and TransFusion [Bai et240

al., 2022], we will present its detailed network structure in241

the supplementary material.242

In the image-guided estimate object heat map module
shown in Figure 2, LiDAR BEV features Lf ∈ RX×Y×C are
used as queries and we collapse the image features along the
height axis I∆f ∈ RH×C as key values. The Spatially Modu-
lated Cross Attention (SMCA) module proposed by TransFu-
sion [Bai et al., 2022] is used to implement feature interaction
and construct bi-modality soft associations. Lf ∈ RX×Y×C

and I∆f ∈ RH×C are fed into the Transformer decoder with
SMCA to obtain the updated features. The object heatmap
generation can be represented by the following formula:

Heatmap =
Υimg(I

∆
f )⊕ΥLiDAR(L

▷◁
f )

2
. (1)

Υimg and ΥLiDAR in formula (1) represent the object heat243

map head for LiDAR BEV features and the object heat map244

head for image guidance, respectively, which is essentially a245

2D convolution process. L▷◁
f comes from reshaping LiDAR246

BEV features into N ×C dimensional features. ⊕ represents 247

the element-by-element summation. The generated heatmap 248

H ∈ RX×Y×U serves as our initial object query, where U 249

is all the categories to be detected by the network. For ob- 250

ject query initialization, the local maximum element in the 251

heatmap H is considered as the initial position of the object. 252

As shown in Figure 2, the initial object query is input to
the Transformer decoder as query positions. The original
BEV feature is regarded as Key-Value. Taking advantage of
the powerful attention mechanism in Transformer, the long-
range dependence between objects in 3D space is modeled.
Based on this, the feature representation F init

obj of each initial
object is updated and the soft association between features
is learned. Then, we use the 3D detection head to regress the
location information, size information, and category informa-
tion of each object box. The formula is as follows:

{δxi, δyi, log(l)i, log(w)i, log(h)i, sin θ̌i,

cos θ̌i, Pobj
i|i = 0...s, Pobj ∈ [0, 1]} =

Φ(TransD(Q = Ḧ,K = F init
obj , V = F init

obj ),

(2)

where x, y represent the centroids of the estimated objects. 253

The length, width, and height of the 3D object box respec- 254

tively are l, w, and h. We calculate the orientation of the front 255

of the estimated object using the yaw angle θ̌i . Pobj ∈ [0, 1] 256

represents the probability that the object is of each semantic 257

class. s represents the number of estimated object positions. 258

The local maximum element in the heat map is computed to 259

generate the initial object queries Ḧ . 260

3.3 LiDAR-Camera Fusion Module with Both Soft 261

and Hard Feature Associations 262

Given LiDAR BEV features Lf ∈ RX×Y×C , texture features 263

If ∈ RH×W×C of each camera, and initial object boxes in- 264

formation Binit
inf , how to better refine the coarse predictions 265

Binit
inf of the first stage during the second stage is a challenge 266

to be addressed. The bi-modality feature fusion on a point- 267

wise level is one LiDAR point feature corresponding to one 268

pixel point feature. This point-to-point feature fusion strategy 269

[Huang et al., 2020; Wang et al., 2021] is not good at allevi- 270

ating the disadvantage of LiDAR point cloud sparsity. It is 271

because when only a few LiDAR point features are available 272

at the estimated initial query location, such hard association 273

fusion strategy only fuses a few pixel features as well. Ex- 274

isting Transformer-based cross-attention fusion methods [Li 275

et al., 2022; Bai et al., 2022] provide good mitigation of 276

the waste of high-resolution camera features. Although the 277

Transformer-based soft feature fusion methods achieve what 278

information should be obtained from the image, this schemes 279

is unable to provide a good confidence score of its fused im- 280

age features relative to the LiDAR BEV features. 281

Based on above insight, we propose a bi-modality fusion 282

strategy with both soft and hard components. As shown in 283

Figure 3, the object center points Cenp{x, y} obtained in the 284

first stage are used as queries Q. On the one hand, the global 285

LiDAR features of each center point Cenp are further up- 286

dated based on the Transformer decoder to model the geomet- 287

ric dependency between the objects in 3D space. On the other 288
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tures. The proposed scheme achieves high quality 3D detection even
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hand, the Transformer-based decoder with SMCA [Bai et al.,289

2022] is used to cross-attention image features. Since each290

Cenp is soft-associated with a global 360-degree LiDAR fea-291

tures, the more reasonable method is that the soft-associated292

fused image features should also be global 360-degree all-293

views. The image features of the six camera views are col-294

lated as a complete texture feature library. Each center points295

query the global image features from the texture feature li-296

brary. Then, we estimate a confidence score (SL
conf ∈ [0, 1],297

SI
conf ∈ [0, 1]) for each center point’s learned LiDAR fea-298

tures and image features separately, which score represents299

which LiDAR features and image features are more reliable.300

Finally the features FS&H of each center point are adaptively301

aggregated by the confidence score.302

In the adaptive hard fusion module of Figure 3, inspired by
EPNet [Huang et al., 2020], The designed network estimates
the confidence scores of the two modal features separately for
each point. The specific process is represented by the follow-
ing formula:

SL
conf = Sigmoid(𭟋(tanh(𭟋(L▷◁

f ) +𭟋(I∆f )))), (3)

where Sigmoid means Sigmoid function. 𭟋 means multi-303

layer perceptron (MLP), and tanh is the tangent function.304

The confidence score SI
conf of the image features is 1−SL

conf .305

Completing the second stage of updating the center point fea-306

tures, we refine the object detection information using the307

3D detection head mentioned in Section 3.2. The details of308

the loss function of our 3D object detection network are pre-309

sented in the supplementary material.310

In Figure 4, in the pink frame, the profile and semantic in-311

formation of the pedestrian can be clearly obtained from the312

image. In contrast, only one or two LiDAR points fall on the313

pedestrian with black clothes in the pink frame, and there are 314

no LiDAR points at all on the lower half of his body. In this 315

case, the previous hard fusion strategy only associates a very 316

small number of pixel features causing the loss of more high- 317

quality texture features. In contrast, the Transformer-based 318

soft fusion strategy enables the association of rich image fea- 319

tures, but this scheme is not perceived the importance of im- 320

age features relative to LiDAR features. In the green box, 321

the LiDAR points that fall more on the pedestrian provide 322

better information about the geometric contour of the pedes- 323

trian. In this case, although the previous hard fusion strategy 324

associates more texture features, these features are not effec- 325

tive enough for 3D detection. Our proposed approach intends 326

to estimate the confidence score of the cross-modal. Such 327

a method enables the network to determine which current 328

modal features are more effective during loss backpropaga- 329

tion between predictions and ground truth, which then gives 330

the network a robust learning capability. High quality cam- 331

era texture features but sparse LiDAR points lead to loss of 332

pedestrian geometric profile. Image quality is degraded due 333

to strong nighttime light but LiDAR point cloud is better at 334

drawing the pedestrian profile. These are two quite com- 335

mon autonomous driving scenarios. For these two cases, our 336

model provides higher attention weights for the higher qual- 337

ity features. As shown in the upper right corner in Figure 4, 338

our method shows robust performance in all cases. 339

4 Experiments 340

4.1 Settings 341

Datasets for Model Training and Evaluation 342

NuScenes [Caesar et al., 2020] is a prestigious real-world 343

dataset of autonomous driving scenes. nuScenes acquisition 344

vehicles are equipped with one spinning LiDAR, five long 345

range RADAR sensors and six cameras, which contribute 346

significantly to the development of autonomous driving al- 347

gorithms. A 32-beam LiDAR captures point cloud data at a 348

frequency of 20 HZ. 6 surround-view cameras cover a 360- 349

degree scene with no dead angle. nuScenes dataset [Caesar et 350

al., 2020] contains 700 training scenes, 150 validation scenes 351

and 150 test scenes. 352

Evaluation Metric 353

The nuScenes dataset provides a variety of metrics for eval- 354

uating model performance. mean Average Precision (mAP): 355

2D Euclidean center distance error for 2D center points un- 356

der BEV, different from IoU in KITTI [Geiger et al., 2013]. 357

nuScenes Detection Score (NDS): Weighted average of mul- 358

tiple evaluation metrics for the nuSceness dataset [Caesar et 359

al., 2020]. Average Translation Error (mATE): Average dis- 360

tance error of center point. Average Scale Error (mASE): 361

Average scale error with object center point and orientation 362

alignment. Average Orientation Error (mAOE): Average ori- 363

entation error between predicted and ground truth. 364

Implementation Details 365

The network proposed in this paper is based on the popu- 366

lar general-purpose 3D object detection platform MMDetec- 367

tion3D [Contributors, 2020] on the PyTorch framework to 368

build the model. We select two 3D backbones, VoxelNet 369



Table 1: Comparison of our method with the best method on the popular nuScenes test set. “Fusion” represents the feature fusion scheme
of the methods, where “S&H” represents our proposed fusion scheme of both hard and soft components. “NO” represents the LiDAR-only
methods. The table shows the evaluation results of the average detection precision for the ten categories in the nuScenes dataset. We also
divide the ten categories into two groups: large objects and small objects, where “C.V.”, “Ped.” and “T.C.” represent construction vehicles,
pedestrians and traffic cones, respectively. “TransFusion (P)” represents the network designed by TransFusion based on the PointPillar feature
extraction structure. We present better evaluation results for TransFusion (P) than in its paper. “FusionPainting (P)” represents the PointPillar
baseline-based method of FusionPainting. The bolded font in the table indicates the optimal result for each part.

Relatively Large Objects Relatively Small Objects
Method Fusion mAP NDS Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.

PointPillar [Lang et al., 2019] NO 40.1 55.0 76.0 31.0 11.3 32.1 36.6 56.4 34.2 14.0 64.0 45.6
PointPainting [Vora et al., 2020] Hard 46.4 58.1 77.9 35.8 15.8 36.2 37.3 60.2 41.5 24.1 73.3 62.4

FusionPainting (P) [Xu et al., 2021] Hard 60.7 66.0 83.5 56.9 21.6 69.9 39.2 58.4 66.4 54.1 82.9 74.5
TransFusion (P) [Bai et al., 2022] Soft 59.6 65.4 86.5 58.3 23.4 71.2 38.7 60.0 66.0 44.0 82.8 65.1

Ours (PointPillar) NO 55.0 62.8 84.7 55.2 21.3 67.4 37.0 60.3 57.4 30.6 79.3 56.6
Ours (PointPillar) S&H 62.1 66.7 86.0 53.9 32.0 62.8 56.2 65.0 63.8 41.6 83.8 77.2

3DCVF [Yoo et al., 2020] Hard 52.7 62.3 83.0 45.0 15.9 48.8 49.6 65.9 51.2 30.4 74.2 62.9
MVP [Yin et al., 2021b] Hard 66.4 70.5 86.8 58.5 26.1 67.4 57.3 74.8 70.0 49.3 89.1 85.0

FusionPainting [Xu et al., 2021] Hard 66.5 70.6 87.0 62.9 25.3 70.6 45.0 67.2 74.6 64.4 88.4 79.5
AutoAlign [Chen et al., 2022] Hard 65.8 70.9 85.9 55.3 29.6 67.7 55.6 - 71.5 51.5 86.4 -

LIFT [Zeng et al., 2022] Soft 65.1 70.2 87.7 55.1 29.4 62.4 59.3 69.3 70.8 47.7 86.1 83.2
Ours (VoxelNet) S&H 67.6 71.0 87.7 58.1 32.9 68.0 61.2 74.0 71.3 50.0 88.0 85.1

TCT [Yuan et al., 2022] NO 50.5 - 83.2 51.5 15.6 63.7 33.0 53.8 54.0 53.8 74.9 52.5
CenterPoint [Yin et al., 2021a] NO 60.3 67.3 85.2 53.5 20.0 63.6 56.0 71.1 59.5 30.7 84.6 78.4
multi-task [Fazlali et al., 2022] NO 60.9 67.3 84.6 50.0 23.4 63.2 55.3 68.2 65.1 38.9 83.7 76.8

Afdetv2 [Hu et al., 2022] NO 62.4 68.5 86.3 54.2 26.7 62.5 58.9 71.0 63.8 34.3 85.8 80.1
S2M2-SSD [Zheng et al., 2022] NO 62.9 69.3 86.3 56.0 26.2 65.4 59.8 75.1 61.6 36.4 84.6 77.7

Ours (VoxelNet) NO 66.1 70.1 86.8 57.4 31.9 68.0 61.7 74.4 68.4 43.1 86.9 82.6

[Zhou and Tuzel, 2018] and PointPillar [Lang et al., 2019],370

as LiDAR feature extractors. A pre-trained ResNet50 [He et371

al., 2016] is used as the 2D backbone to extract the image fea-372

tures. As with TransFusion [Bai et al., 2022] and PointAug-373

menting [Wang et al., 2021], we set the resolution of the im-374

ages to 448×800 to reduce the training and inference time375

consumption. The main training steps consist of three: 1)376

Firstly, the 3D backbone, the first Transformer decoder and377

the 3D detection head are pre-trained with only LiDAR sig-378

nals as input. About 20 epochs enable full convergence. In379

the first step we use the same data enhancement strategy as380

CenterPoint [Yin et al., 2021a]; 2) Following the TransFu-381

sion training plan, we continue training for about 6 epochs382

in the second step without the SECOND [Yan et al., 2018]383

data enhancement strategy; 3) In the third step, we train the384

image-guided estimation of the object heat map module and385

the bi-modality soft & hard fusion module based on 3D box386

center point guidance. We used two NVIDIA Quadro RTX387

8000 with a batch size of 12 to train the neural network.388

4.2 Experimental Results and Analysis389

Comparison with The SOTA Baselines390

All experimental results in this paper are submitted to the of-391

ficial nuScenes evaluation site for model performance eval-392

uation. In Table I, we compare the state-of-the-art 3D ob-393

ject detection algorithms on the nuScenes ranking [Caesar et394

al., 2020]. We also split the 10 categories of the compari-395

son into two broad categories. Baseline PointPillar [Lang et396

al., 2019] is mainly used in the upper part of Table 1. Point- 397

Painting [Vora et al., 2020] performs hard bi-modality feature 398

aggregation based on PointPillar. Inspired by Transformer’s 399

multi-headed attention mechanism, TransFusion [Bai et al., 400

2022] performs soft bimodality feature aggregation based on 401

PointPillar. Both fusion strategies have more significant per- 402

formance improvements over the baseline PointPillar. The 403

proposed bi-modality fusion strategy with both soft and hard 404

fusion in this paper completely outperforms previous soft 405

and hard fusion methods [Xu et al., 2021; Vora et al., 2020; 406

Bai et al., 2022] in both mAP and NDS metrics. In particular, 407

significant accuracy improvements are achieved for uncom- 408

mon classes (e.g., construction vehicle, trailer, and barrier) 409

and small objects (pedestrian and traffic cone). Experimen- 410

tal results using PointPillar as a baseline demonstrate that 411

the proposed combined soft and hard multi-modality fusion 412

method outperforms either hard or soft fusion only. 413

In the middle part of Table 1, the main focus is on com- 414

paring the methods using non-PointPillar baselines. Our 415

proposed method based on 3D backbone VoxelNet [Zhou 416

and Tuzel, 2018] achieves a very outstanding overall perfor- 417

mance. Comparing with state-of-the-art 3D object detection 418

methods [Yoo et al., 2020; Yin et al., 2021b; Chen et al., 419

2022; Xu et al., 2021; Zeng et al., 2022] with 2D-3D fea- 420

ture fusion, the method in this paper achieves the best per- 421

formance in both mAP and NDS metrics. We attribute the 422

proposed soft and hard bi-modality fusion strategy to play a 423



Table 2: Comparison of different Backbone and different feature
fusion schemes. For PointPillars, the scheme of TransFusion is used
for soft fusion and the scheme of PointPainting is used for hard fu-
sion. For VoxelNet, the TransFusion scheme is used for soft fusion,
and the direct feature concat method and PointAugmenting scheme
are used for hard fusion. “Improvement” represents the increase in
gain of our method compared to the baseline.

Method Backbone mAP NDS

PointPillar PointPillars 40.1 55.0
CenterPoint PointPillars 50.3 60.2

TransFusion (LiDAR-Only) PointPillars 54.5 62.7
Ours (LiDAR-Only) PointPillars 55.0 62.8

Soft Fusion (TransFusion) PointPillars 58.3 64.5
Hard Fusion (PointPainting) PointPillars 46.4 58.1

Ours Fusion PointPillars 60.7 66.0
Improvement↑ None 20.6 11.0

CenterPoint VoxelNet 59.6 66.8
Ours (LiDAR-Only) VoxelNet 66.1 70.1

Soft Fusion (TransFusion) VoxelNet 65.6 69.7
Hard Fusion (Point-wise concat) VoxelNet 63.3 67.6
Hard Fusion (PointAugmenting) VoxelNet 64.2 68.7

Ours Fusion VoxelNet 67.6 71.0
Improvement↑ None 7.9 4.1

significant role. The bottleneck in the accuracy improvement424

of current multi-modality fusion methods is the poor detec-425

tion accuracy of small objects and the non-robust perception426

performance for poor scenes. The strategy of combining both427

soft and hard fusion proposed in this paper is considered as a428

promising thought, especially for extreme environments. The429

performance of our LiDAR-only signal methods is also re-430

ported in the lower part of the Table 1. The LiDAR signal-431

only method in this paper achieves the best performance in432

almost all metrics.433

Comparison of Different Feature Fusion Schemes434

In Table 2, we report our results based on different back-435

bone networks [Lang et al., 2019; Zhou and Tuzel, 2018].436

All the predict results in the table are submitted on the offi-437

cial nuScenes evaluation web site. Compared to the baseline438

PointPillar, our fusion strategy improves the mAP and NDS439

metrics by 20.6 and 11.0, respectively. Compared to existing440

3D object detection algorithms with soft feature fusion only441

or hard feature fusion only, our proposed method demon-442

strates promising evaluation results. For the mAP metric,443

our algorithm outperforms PointPainting [Vora et al., 2020],444

a hard fusion strategy, by about 30%. Also, the proposed al-445

gorithm outperforms TransFusion [Bai et al., 2022], a soft446

fusion strategy, by about 4%. For the VoxelNet backbone447

, compared to CenterPoint [Yin et al., 2021a] using Voxel-448

Net as the feature extractor, our method improves the mAP449

and NDS metrics by 7.9 and 4.1, respectively. It is noticed450

from Table II that both soft feature fusion-only and hard fea-451

ture fusion-only strategies have shown great gains for 3D452

object detection tasks. However, the performance improve-453

ment of 3D object detection networks with soft-feature fusion454

Table 3: Comparison of the detection errors of the different
methods. Our network has the smallest Average Translation Error
(mATE) and Average Orientation Error (mAOE) compared to the
SOAT method.

Method FusionmATE↓mASE↓mAOE↓

CenterPoint [Yin et al., 2021a] NO 0.262 0.239 0.361
Ours (PointPillars) NO 0.332 0.277 0.352
Ours (PointPillars) S&H 0.296 0.250 0.432

3DCVF [Yoo et al., 2020] Hard 0.300 0.245 0.458
TransFusion [Bai et al., 2022] Soft 0.259 0.243 0.359

Ours (VoxelNet) NO 0.259 0.246 0.386
Ours (VoxelNet) S&H 0.258 0.256 0.356

only or hard-feature fusion is already facing increasingly dif- 455

ficult breakthroughs. Previous methods [Jiang et al., 2022; 456

Huang et al., 2020; Zeng et al., 2022; Yoo et al., 2020] have 457

also corroborated the effectiveness of both strategies one by 458

one. Based on this insight, it is reasonable solution how to 459

better combine the advantages of point-by-point hard feature 460

fusion and soft association fusion based on Transformer’s 461

multi-headed attention mechanism. To design a fusion strat- 462

egy that takes into account the advantages of both will cre- 463

ate a breakthrough for robots to perceive the 3D real world 464

more accurately. In this paper , we explore such a scheme and 465

demonstrate its effectiveness through various experiments on 466

the nuScenes dataset [Caesar et al., 2020]. 467

Error Analysis of Model Prediction Results 468

We report the results of the evaluation of our method on 469

mATE, mASE and mAOE metrics in Table 3. Likewise, this 470

three evaluation metrics measure the robustness of the model 471

for perception of multiple scenes. Our PointPillar-based fu- 472

sion method shows significant improvement in the mATE and 473

mASE metrics. Compared to other fusion methods [Bai et 474

al., 2022; Yoo et al., 2020], our VoxelNet-based approach 475

demonstrates low errors on mATE and mAOE. The effective- 476

ness of the bi-modality fusion strategy with both hard and soft 477

is confirmed by these metrics. 478

5 Conclusion 479

In this paper, we reveal the key challenges facing LiDAR fea- 480

ture and camera LiDAR feature fusion. To bridge the disad- 481

vantages of previous methods for both hard and soft feature 482

association, we propose a bi-modality feature fusion strat- 483

egy with both soft and hard components. Comparison ex- 484

periments demonstrate the effectiveness of our idea. The de- 485

signed network alleviates the performance degradation of the 486

network caused by poor features of individual sensor signals 487

and improves the detection precision of small objects. The 488

model proposed in this paper shows competitive results on the 489

nuScenes dataset. In particular, optimal prediction results are 490

achieved for the estimation of challenging categories such as 491

trailer, construction vehicle and traffic cone. We believe that 492

such bi-modality fusion strategy of both hard and soft will be 493

beneficial to other fields as well. 494
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